

iii

Design of a Network-Based Anomaly Detection
System Using VFDT Algorithm

Naseer Alwan Hussein

Submitted to the

Institute of Graduate Studies and Research
in partial fulfilment of the requirements for the Degree of

Master of Science

in
Computer Engineering

Eastern Mediterranean University
May 2014

Gazimağusa, North Cyprus

i

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz
 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Prof. Dr. IşıkAybay
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Assoc. Prof. Dr. Mohammed Salamah
 Supervisor

 Examining Committee

1. Prof. Dr. Rza Bashirov

2. Assoc. Prof. Dr. Mohammed Salamah

3. Asst. Prof. Dr.Gurcu Oz

iii

ABSTRACT

Despite the rapid progress in information technology, the problem of protecting

computer and network security remained a major challenge for most researchers,

especially after the expansion of networks and evolution of technology and the

increasing number of network users and the internet. Networks need some tools for

protection, such as firewall, Intrusion Detection Systems (IDSs) and Intrusion

Prevention System (IPS). The aim of this thesis is to build a Network-based

Anomaly Detection System (NADS). This system depends on the normal behavior of

the network, in that it can distinguish each abnormal behavior. This system can work

in two modes, online and offline modes. Very Fast Decision Tree (VFDT) algorithm

was used to build the classifier for intrusions. VFDT is one of the data mining

algorithms that deal with high data streams in a very short time. Experimental results

demonstrated that NADS system is highly successful in detecting known and

unknown attacks by 93%.

Keywords: Network Security, Intrusion Detection, Very Fast Decision Tree

Algorithm, KKD CUP99 dataset.

iv

ÖZ

Bilgi teknolojilerindeki hızlı gelişmelere rağmen bilgisayar ve ağ güvenliğinin

sağlanması birçok araştırmacı için, özellikle ağ sayılarının çoğalması, teknolojinin

değişmesi, sayıları artmakta olan ağ kullanıcıları ve İnternet gibi nedenlerle,

çözülmesi zor bir konu olarak kalmıştır. Var olan ağların korunma için güvenlik

duvarı, güvenlik ihlali tespit ve önleme sistemleri gibi çeşitli araçlara ihtiyacı

bulunmaktadır. Bu tez çalışmasının amacı ağ merkezli bir anormal saldırı tespit

sistemi geliştirmektir (NADS). Adı geçen sistems ağın normal davranışına bağlı

olarak anormal davranış biçimini tespit etme görevini sürdürüp çevirimiçi ve

çevirimdışı olmak üzere iki biçimde çalışmaktadır. Ağ ihlallerinin sınıflandırılması

için Çok Hızlı Karar Verme Ağacı (VFDT) algoritması kullanılmıştır. Çok Hızlı

Karar Verme Ağacı kısa sürede gerçekleşen yüksek veri akışı ile ilgilenen veri

madenciliği algoritmalarından biridir. Deneysel sonuçlar,ağ, ağ merkezli anormal

saldırı tespit sisteminin bilinen (NADS) ve bilinmeyen saldırıları tespit etmekte % 93

başarılı olduğunu göstermiştir.

Anahtar Kelimeler: Ağ Güvenliği, İhlal Tespiti,Çok Hızlı Karar Verme Ağacı

Algoritması, KKD CUP99 veri grubu.

v

DEDICATION

I want to seize the opportunity to fully thank my parents; my father and my mother

and my brothers, who were always beside me spiritually, supporting me with all their

truth feelings, praying for me achieve success and exist my and their dream by

getting my master diploma from this reputed university.

For each and every one whom once was a barrier rock in my life path, for those who

made my journey of life complicated, for whom once abused me directly and

indirectly, to all those failure, weakness and loss moments, to my dreams that I have

always dreamt of achieving and to those times when I touched frustration loneliness

and misery.

Thank you from the bottom of my heart, without you I wouldn’t have achieved

success.

vi

ACKNOWLEDGMENT

No words can describe my appreciation to my supervisor, Dr. Muhammed Salamah.

I want to take the opportunity as well to thank my parents whom without their

inseparable support and prayers I wouldn't succeed. Firstly My Father, Alwan

Hussein Ali, and the person for whom I should thank for planting fundaments of my

knowledge, teaching me the joy of intellectual pursuit. Secondly I want to thank my

dear Mother, Waheba Homad Muhammed, for she is the one who sincerely raised me

with her caring and gentle love. Also I want to thank all my brothers.

Finally, I would like to thank everybody who was part of the success in my thesis,

knowing that I sadly express my apology that I could not mention all with their

personal names.

vii

TABLE OF CONTENTS

ABSTRACT ..iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS ... xi

1 INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Motivation .. 2

1.4 Aim of the Thesis ... 2

1.5 Thesis Outlines .. 2

2 THEORETICAL REVIEW ... 4

2.1 Introduction .. 4

2.2 Intrusion Detection System (IDS) ... 4

2.2.1 Misuse Detection .. 8

2.2.2 Anomaly Detection ... 8

2.3 KDD CUP 99 Data set Description ... 8

2.4 Literature Review .. 10

2.5 Very Fast Decision Tree (VFDT) Algorithm .. 16

3 THE PROPOSED NADS SYSTEM ... 19

3.1 Introduction .. 19

viii

3.2 System Architecture ... 19

3.3 The Proposed System .. 20

3.3.1 Data Collection ... 24

3.3.2 Pre-processing .. 26

3.3.3 Classification .. 28

3.3.4 Response ... 29

4 NADS SYSTEM IMPLEMENTATION AND RESULTS .. 31

4.1 Introduction .. 31

4.2 System Architecture ... 31

4.3 Performance Metrics .. 32

4.4 Real Traffic Description .. 35

4.4.1 Pre-processing Real Network Traffic ... 37

4.5 Experimental Methodology and Results .. 38

4.5.1 System Accuracy Results ... 41

4.5.2 Classification Speed Results .. 41

4.5.3 Memory Allocation Results.. 42

4.6 Comparison of the Proposed NADS System Using the VFDT Algorithm with

Other Algorithms. .. 43

5 CONCLUSION ... 45

REFERENCES ... 47

APPENDICES ... 55

Appendix: A List features KDD CUP 99 dataset for which the class is selected 56

Appendix: B Attributes description of KDD CUP 99 dataset 57

Appendix: C Start Capture (Online Detection) ... 60

ix

LIST OF TABLES

Table 2.1: Summary of different related works. ... 15

Table 4.1: Confusion Matrix (CM) [40]. ... 33

Table 4.2: The Cost Matrix [40]. ... 34

Table 4.3 Performance metric between different experiments 40

Table 4.4: A comparison of proposed system with other classification algorithms that

used KDD CUP 99 data set .. 44

x

LIST OF FIGURES

Figure 2.1: A Generic intrusion detection model [37]. .. 7

Figure 2.2: The maximum information gain for each feature [44]. 10

Figure 2.3: The VFDT algorithm [46]. .. 17

Figure 3.1: A Generic architecture of an NADS. ... 20

Figure 3.2: Block diagram of the training phase of the proposed systems. 21

Figure 3.3: Block diagram of the testing phase of the proposed systems. 23

Figure 3.4: Stages of packet decoder [24]. ... 26

Figure 3.5: The stages of pre-processing data [24]. ... 28

Figure 3.6: The structure of the anomaly detector [50]. .. 29

Figure 3.7: Block diagram of data of the proposed system ………….……………. 30

Figure 4.1: System architecture.. 32

Figure 4.2: Receiver operating characteristic [52]. .. 34

Figure 4.3: The windows that deal with real packet capturing 36

Figure 4.4: A sample of network traffic ... 37

Figure 4.5: Extraction connection from real network traffic 38

Figure 4.6: A sample connection in the network ... 39

Figure 4.7: ROC curve for VFDT algorithm. .. 41

Figure 4.8: Training time versus number of connections. ... 42

Figure 4.9: No of nodes versus number of connections. .. 43

xi

LIST OF ABBREVIATIONS

ADAM Audit Data Analysis and Mining.

ANN Artificial Neural Networks.

BN Bayes Net.

CART Classification and Regression Trees.

CM Confusion Matrix.

CPT Cost per Test.

DARPA Defence Advanced Research Project Agency.

DB Data Base.

DoS Denial of Service.

DR Detection Rate.

DT Detection Tree.

FAR False Alarm Rate.

FL Fuzzy Logic.

FN False Negative.

FP False Positive.

IDDM Intrusion Discovery Data Mining.

HB Hoeffding Bound.

HIDS Host-based Intrusion Detection System.

HT Hoeffding Tree.

ICMP Internet Control Message Protocol.

ID Intrusion Detection.

ID3 Iterative Dichotomiser 3.

xii

IDDM Intrusion Detection Data Mining.

IDS Intrusion Detection System.

IDSs Intrusion Detection Systems.

IG Information Gain.

IP Internet Protocol.

IPS Intrusion Prevention System.

ISP Internet Service Provider.

ITI Incremental Tree Induction.

KDD Knowledge Discovery and Data.

KDD CUP99 Knowledge Discovery and Data Mining CUP1999.

LAN Local Area Network.

MAC Media Address Control.

MARS Multivariate Adaptive Regression Spines.

MINDS Minnesota Intrusion Detection System.

MLP Multilayer Perception.

NADS Network-based Anomaly Detection System.

NB Naïve Bayesian.

NIDS Network-based Intrusion System.

NN Neural Network.

PART Partial Audit Reclusion Tree.

PDU Protocol Data Unit.

PHAD Packet Header Anomaly Detection.

PSP Percentage of Successful Prediction.

xiii

R2L Remote to Local.

RF Random Forest.

ROC Receiver Operation Characteristic.

SLIQ Supervised Learning In Ques.

SPRINT Scalable Parallelizable Induction of Decision Tree.

SVM Support Vector Machine.

SOM Self-Organizating Map.

TCP Transmission Control Protocol.

Winpcap Windows Packet Capturing.

TN True Negative.

TP True Positive.

TPR True Positive Rate.

U2R User to Root.

UDP User Datagram Protocol.

VFDT Very Fast Decision Tree.

TCP/IP Transmission Control Protocol/Internet Protocol.

1

Chapter 1

1INTRODUCTION

1.1 Introduction

In our society, information is becoming increasingly dependent on rapid access and

interactive processing. As this demand increases, more information is being stored on

computers. The proliferation of inexpensive computers and computer networks has

worsened the problem of unauthorized access and tampering with data. Increasing

connectivity not only provides access to large and varied sources of data more

quickly than ever before, it also provides an access path to data from virtually

anywhere on the network. With an increased understanding of how systems work,

intruders have become highly skilled at diagnosing weaknesses in systems, and

exploiting them to obtain such privileges that they can do anything on the system.

They also use patterns that are difficult to trace and identify. Computer systems are

therefore not likely to remain safe in the nearest future because of the intruder’s acts.

Therefore, we must have measures in place to detect security breaches, i.e., identify

intruders and their methods of intrusion [1].

Intrusion Detection System (IDS) is highly significant and recommended as the final

defense in the overall protection scheme of a computer system. There are progresses

not only to detect successful breaches of security, but also to monitor varying

attempts to breach the system security, and also provides important information for

timely counter measures [2].

2

1.2 Problem Statement

Monitoring the whole network traffic in a network is a challenging issue. Overlap of

the protocols “protocol layering” makes it difficult to extract the features of packets

quickly and monitor the network. Also, there is a difficulty in knowing whether a

contact is normal or attack.

1.3 Motivation

Accuracy and efficiency are two very important performance measures for the IDS

system. It is therefore necessary to provide valuable information for the IDS analyst

who monitors the computer system and the network. The use of decision tree as a

classification technique helps us to achieve that. In addition, it is important to work

in real-time, or as close to real-time as possible. Real-time operation is necessary for

the IDS analyst so as to help take counter measures against attacks before they do

much harm to the protected systems.

1.4 Aim of the Thesis

The aim of this thesis is to build a network-based anomaly NADS system that helps

to detect abnormal behavior of network traffic. This can be achieved by using fast

data mining algorithm. This system is characterized with processing and analyzing of

high-speed network traffic; to discover and accurately identify new attacks by

reducing the False Alarm (FA) rate to the minimal; detecting the intrusion in real

time and making use of known attacks pattern in the train phase to increase detection

ratio.

1.5 Thesis Outlines

The layout of the remainder of the thesis and the contents of the individual chapters

are reviewed briefly. The thesis is divided into five chapters. Chapter two presents

theoretical background which contains a generic IDS model, Knowledge Discovery

3

Data mining (KDD CUP99 data set) description, enhanced decision tree algorithms

and very fast decision tree algorithm. Chapter three shows the proposed system and

system architecture. Chapter four shows the implementation and results from the

proposed system and then compared the system with other classification algorithms.

Chapter five finally presents conclusions and suggestions for future work.

4

Chapter 2

2THEORETICAL REVIEW

2.1 Introduction

With the tremendous growth of network-based services and sensitive information on

networks, network security is getting more and more importance than ever. Intrusion

poses a serious security risk in a network environment. The ever growing new

intrusion types have a serious problem for their detection. The human labeling of the

available network audit data instances is usually tedious, time consuming and

expensive.

2.2 Intrusion Detection System (IDS)

Intrusion is any set of actions that attempt to compromise the integrity,

confidentiality, and availability of a computer resource. This definition disregards the

success or failure of those actions, so it also corresponds to attacks against a

computer system. The problem of identifying actions that attempt to compromise the

integrity, confidentiality, or availability of a computer resource is called intrusion

detection [3].

The purpose of an IDS product is to monitor the network system for any type of

attacks. An attack might be signaled by something as simple as a program that could

modify the user name or could be a complex attack that involves sequence of events

spanning multiple systems. IDSs are classified through system monitors because they

5

usually depend on auditing information provided from the systems logs or data

gathered by sniffing network traffic [4].

However, there are also Intrusion detection systems that do not operate in real time,

either because of the nature of the analysis they perform or because they are geared

for forensic analysis (analysis of what has happened in the past on a system). The

definition of an Intrusion detection system does not include, preventing the intrusion

from occurring, but only detecting it and reporting the operations. There are some

Intrusion detection systems that try to react when they detect an unauthorized action.

Such reaction usually includes stopping the damage, for example, by terminating a

network connection [5].

IDS is therefore needed as another wall to protect computer systems. The central

elements to Intrusion detection engine are: resources to be protected in a target

system, i.e., user accounts file systems, system kernels…etc; models that characterize

the “normal” or “legitimate” behavior of these resources; Techniques that compare

the actual system activities with the established models, and identify those that are

“abnormal” or “intrusive” [5].

The process of intrusion-analysis can be separated into four stages as below [6]:

1. Preprocessing: When data is collected from an IDS sensor, the data is

organized for classification. The preprocessing will help us to determine the

format the data is put into, which is usually some canonical format or could

be a structured database.

2. Analysis: The analysis stage begins after the preprocessing stage is completed

and it is applied to all the records in the database. The data record is

6

compared with the knowledge base, and the data record will either be logged

as an intrusion event or it will be dropped.

3. Responses: When the data record has been logged as an intrusion, a response

can be initiated. This response contains an alert and passively collection

information about the intrusion.

4. Refinement: This stage is responsible for the correctness of the intrusion.

The authors in [7] introduced a generic model for intrusion detection that is shown in

Figure 2.1. The model is widely applicable to intrusion detection systems today. The

three main components are the event generator, the activity profile, and the rule set.

Early intrusion detection systems often relied on expert system techniques and

consequently the idea of a rule base appears in the generic model.

Event generator is the component that provides information about system energizing.

Events are derived from system audit trails, from network traffic, or from application

of specific subsystems such as firewalls or authentication servers. Rule set is best

thought of as the interface that decides whether an intrusion has occurred or not.

Rule-based expert systems frequently were the preferred inferences tool for early

IDSs. The best way to think of the rule set is as a generic detector engine examining

events and state data using models, rules, patterns, and statistics to flag intrusive

behavior. Activity profile maintains the state of the system or network being

monitored. As events appear from the data source, variables in the activity profile are

updated. New variables might be created as well depending on the action stated by

the rule set.

7

The presence of some event might trigger the rule base to learn and add a new rule. If

the rule set detects a threshold change in the activity profile, one response could be to

alter the types, frequency, or details of event emitted from the event generator [7].

Figure 2.1: A Generic intrusion detection model [7].

Each of the three main subsystems could run on different nodes in a network.

Intrusion detection system works on three main types of source information [8]:

1. Network: Data packets are collected and analyzed for signs of intrusion.

2. Hosts: Operating system and computer system details, such as memory and

processor use, user activities, and applications running are examined for indications

of misuse.

3. Application: Application logs “such as web server” can be examined for signs of

attacks.

If the data is incomplete, detection abilities could be degraded. If the data is

incorrect, the intrusion detection system could stop detecting certain intrusions and

give its users a false sense of security [9].

Event Generator

Rule set/Detection

Engine

Activity Profile

Audit Trails,

Network Packets,

Application Logs

Design

New

Profiles

Define new

and Modify

Existing

Rules

Update

Profile

Create

Anomaly

8

2.2.1 Misuse Detection

Misuse detection identifies intrusions by matching monitored events to patterns or

signatures of attacks. The attack signatures are the characteristics associated with

successful known attacks. The major advantage of misuse detection is that the

method possesses high accuracy in detecting known attacks. However, its detection

ability is limited by the signature database. Unless new attacks are transformed into

signatures and added to the database, a misuse-based IDS cannot detect any attack of

this type. Different techniques such as expert systems, signature analysis, and state

transition analysis are utilized in misuse detection [10].

2.2.2 Anomaly Detection

Anomaly detection assumes that intrusions are anomalies that necessarily differ from

normal behavior. Basically, anomaly detection establishes a profile for normal

operation and marks the activities that deviate significantly from the profile as

attacks. The main advantage of anomaly detection is that it can detect unknown

attacks. However, this advantage is paid for in terms of a high false positive rate

because, in practice, anomalies are not necessarily intrusive. Moreover, anomaly

detection cannot detect the attacks that do not obviously deviate from normal

activities [10].

2.3 KDD CUP 99 Data set Description

Since 1999, Knowledge Discovery Data mining "KDD CUP99" has been the most

wildly used data set for the evaluation of anomaly detection methods. This data set is

prepared by Stolfo et al. It is built based on the data captured in DARPA'98 IDS

evaluation program. DARPA'98 is about 4 gigabytes of compressed raw “binary” tcp

dump data of 7 weeks of network traffic, which can be processed into about 5 million

9

connection records, each with about 100 bytes. The two weeks of test data have

around 2 million connection records.

KDD training dataset consists of approximately 4,900,000 single connection vectors

each of which contains 41 features and is labeled as either normal or an attack, with

exactly one specific attack type [11]. The simulated attacks fall in one of the

following four categories.

Denial of Service Attack (DoS): is an attack in which the attacker makes some

computing or memory resource too busy or too full to handle legitimate requests, or

denies legitimate users access to a machine.

User to Root Attack (U2R): is a class of exploit in which the attacker starts out with

access to a normal user account on the system (perhaps gained by sniffing

passwords, a dictionary attack, or social engineering) and is able to exploit some

vulnerability to gain root access to the system.

Remote to Local Attack (R2L): occurs when an attacker who has the ability to send

packets to a machine over a network but who does not have an account on that

machine exploits some vulnerability to gain local access as a user of that machine.

Probing Attack (probe): is an attempt to gather information about a network of

computers for the apparent purpose of circumventing its security controls.

Figure 2.2 shows the classification of the 41 features of the KDD CUP99 dataset

sorted in a descending order through the information gain ratio. Most of the features

10

have Information Gain (IG) under the average of the datasets, “IG average = 0.22”.

In fact, only 20 features are above IG average. This shows that the original dataset

has data concentration in a small group of values. The features result in a

convergence of connection categories within a small group of values which have

little significant to describe a node behavior. This indicates that the original dataset

may contain irrelevant data for the IDS and so needs to be optimized.

dddddddFigure 2.2: The maximum information gain for each feature [10].

2.4 Literature Review

This section surveys some of the recent and most related works to the proposed

system.

The authors in [12] proposed the use of a data mining framework for building

intrusion detection models. This framework consists of classification, association

rules, and frequent episodes programs, which can be used to automatically construct

detection models. They used the set of relevant system features to compute

inductively learned, process raw audit data from the send mail system, call data and

11

the network TCP dump data and then summarized into connection records attributes.

This approach applies on two general data mining algorithms: association rules

algorithm, and the frequent episodes algorithm.

The authors in [13] proposed Audit Data Analysis and Mining (ADAM), a real-time

anomaly detection system that uses data mining techniques to detect intrusions.

ADAM uses a combination of association rules mining and classification to discover

attacks in a TCP dump. ADAM uses a classifier which has been previously trained to

classify the suspicious connections as a known type of attack, unknown type or a

normal connection.

ADAM performs anomalies detection in two phases: the training phase, and the

testing phase. In the training phase, it uses a data stream for which we know the

types of the attack. The attack-free parts of the stream are fed into a module that

performs off-line association rules discovery. The output of this module is a profile

of rules that we call “normal”. The profile along with the training data set is also fed

into a module that uses a combination of a dynamic, on-line algorithm for association

rules, whose output consists of frequent item sets that characterize attacks to the

system. These item sets, along with a set of features extracted from the data stream

by a feature selection module are used as the training set for a classifier “decision

tree”. This whole phase takes place off-line before using the system to detect

intrusions. In the testing phase, the actual detection of intrusions is implemented.

The author in [14] proposed the combination of multiple host-based detectors using

decision tree. This method uses conventional measures for intrusion detection and

modeling methods appropriate to each measure. Statistical Rule-base method is used

12

to model these measures which are combined with decision tree. The proposed

detection method has a good performance because it can model normal behaviors

from various perspectives.

The decision tree used here is the C4.5 algorithm. The result shows that the

combined detection method dramatically reduces the false-positive error rate against

various types of intrusion.

The authors in [15] suggested a network-based intrusion detection system by using

“Apriority Algorithm”. The system gathered its information from the User Datagram

Protocol (UDP) and Internet Control Message Protocol (ICMP), which work at the

internet and transport layers within the TCP/IP communication model. This captured

information is stored at a data warehouse. It found the relationships between

attributes values that are stored at the data warehouse, and these relationships

presents the normal behavior of the network and calculate the deviation from the

normal behavior. It calculates the minimum distance from the normal behavior by

entering different weights for the data warehouse, according to their importance

within the network then testing the system on a local computer network which is

built for this purpose.

The authors in [16] proposed the use of two algorithms: back propagation algorithm

and C4.5 algorithm for intrusion detection. Since these algorithms are mainly

applicable to misuse detection, it shows that the definition of anomaly detection not

only takes into account normal profiles, but also handles known attacks and explores

supervised machine learning algorithm; particularly neural networks and decision

trees for intrusion detection. In fact, decision trees induction algorithm has proved its

13

efficiency in predicting the different classes of unlabeled data in Knowledge

Discovery Databases (KDD CUP99). Test data set contains attacks such as Denial of

Service (DoS), probe, User to Root (U2R) and Remote to Local (R2L). Experimental

results demonstrate that while neural networks are highly successful in detecting

known attacks, decision trees are more interesting to detect new attacks.

In [17], the authors proposed an approach which applies one of the efficient data

mining algorithms called naïve Bayes for anomaly based network intrusion detection.

Experimental results on the KDD CUP 99 data set showed the novelty of the

approach in detecting network intrusion. It is observed that the technique performs

better in terms of false positive rate, cost, and computational time when applied to

KDD CUP 99 data set compared to a back propagation neural network based

approach.

In [18], the authors designed a fuzzy logic-based system for effectively identifying

the intrusion activists within a network. The fuzzy logic-based system helps to detect

an intrusion behavior of the networks, since the rule base contains a better set of

rules. The system uses mechanical method for generation of fuzzy rules that are

obtained from the definite rules using frequent items. The experiments and

evaluations of this intrusion detection system are performed with the KDD CUP 99

Intrusion detection dataset. The experiments results show that fuzzy logic-based

system achieved higher precision in identifying whether the records are normal or

attack.

The authors in [19], proposed a novel hybrid model for misuse and anomaly

detection. The C4.5 based detection tree separates the network traffic into normal

14

and attack categories. The normal traffic is sent to anomaly detector and parallel

attacks are sent to a decision trees based classifier for labeling with specific attack

type. The model is trained and tested on two disjoint dataset provided in the KDD

CUP 99. Results show the achievement of high detection rate for misuse and

anomaly detection techniques. Summarizes the previous works that are related with

the subject of our study in Table 2.1.

15

Table 2.1: Summary of different related works.
Seq. Reference Methodology Algorithm Online

1 [8] Data mining approaches for intrusion detection and
classification based anomaly detection. Features
extraction from header, content and statistical packets.

Association
Rules, Frequent

Episodes

No

2 [14] ADAM Audit Data Analysis and mining, association
rules and classification based anomaly detection.
Features extraction from header, content and statistical
packets.

Association
Rules, Decision

tree

Yes

3 [15] Combining multiple host-based detectors using decision
tree. Use conventional measures for intrusion detection.

C4.5 No

4 [16] Apriori algorithm in finding the association rules.
Calculate the deviation from the normal behavior.

Apriori No

5 [17] Neural networks vs. decision trees for intrusion
detection. Enhance the notion of anomaly detection and
then used both neural networks and decision trees for
intrusion detection.

Back propagation
neural networks,

C4.5

Yes

6 [18] Apply one of the efficient data mining algorithms called
Naïve Bayes for anomaly based network intrusion
detection.

Naïve Bayes No

7 [20] Evaluate performance of a comprehensive set of
classifier algorithms using KDD CUP 99 dataset.

Bayes Net, J48,
Decision Table,

Ripper,MLP

No

8 [21] Attacks classification in adaptive intrusion detection
using decision tree. Features extraction from header,
content and statistical packets.

ID3,C4.5 No

9 [23] Implementation of anomaly detection technique using
machine learning algorithms. Features extraction from
header, content and statistical packets.

K-Means, ID3 No

10 [24] Designed fuzzy logic-based system for effectively
identifying the intrusion activities within a network.

Fuzzy Logic No

11 [25] Proposed novel hybrid model for misuse and anomaly
detection. Features extraction from header, content and
statistical packets.

C4.5 No

16

2.5 Very Fast Decision Tree (VFDT) Algorithm

VFDT is a high-performance data mining system based on Hoeffding trees. Many

classification learning methods have been proposed, of which the decision tree

learning method is commonly used, because it is fast and the description of

classifiers that it derives is easily understood. VFDT deals with data streams. As data

arrives, this data stream grows gradually while the data is classified [20].

VFDT does not accumulate the examples in main memory, because it can gradually

grow without waiting for the arrival of all the examples. The construction algorithm

of the VFDT accumulates only the classes of examples and the synchronous

occurrence frequency of attribute values in each node to decrease the consumption of

memory and processing time. Hence, instead of accumulating examples in a decision

tree the VFDT gradually grows as examples are received to create leaf nodes which

grow into branches from only the root node. VFDT is different from classical

Decision Tree (DT) algorithms. Classical DT receives all examples as input, and is

called an offline type decision tree. Therefore, it cannot be applied to data streams.

On the other hand, a VFDT construction in which new examples arrive in sequence

at short intervals in a data stream and huge numbers of examples accumulate is

called an online type decision tree [21]. This algorithm is presented in Figure 2.3.

17

Figure 2.3: The VFDT algorithm [21].

In this thesis, we apply one of the efficient data mining algorithms called Very Fast

Decision Tree (VFDT) for anomaly based network intrusion detection. Experimental

results on the Knowledge Discovery Data Mining (KDDCUP99) data set show that

Algorithm Anomaly Detection

Input: Sequence Vector of Features

Output: Class of Vectors

1. Select specific features from offline data set vectors and arrange them in file.

2. Read vector of features file(with class) to learn model in training phase

3. While. T. Do

4. If apply model in on line mode(test phase) Then

5. Capture network packets and extract basic features only as vectors from
network traffic.

6. If vector is normal Than

7. Mark the vector is normal.

8. Else

9. Mark the vector is abnormal.

10. Else

11. Capture network packets and extract basic, content and statistical Feature from
several sessions and save in file (without class).

12. Read features file (without class) to test connection.

13. If vector is normal Than

14. Mark the vector is normal.

15. Else

16. Mark the vector is abnormal.

17. If interrupt the system then

18. Exit

19. Else

20. End

21. Return class

18

our approach is effective in detecting network intrusion. It is observed that the

proposed technique performs better in terms of false alarm rate, cost, and

computational time when applied to KDD99 data sets compared with other

algorithms [22].

19

Chapter 3

3THE PROPOSED NADS SYSTEM

3.1 Introduction

This chapter presents the proposed NADS system by using Very Fast Decision Tree

(VFDT) algorithm. It also classifies and identifies each connection record to normal

or intrusion. Finally, the results are displayed as alarm report. The main function of

IDS is data collection, pre-processing, classification and response. Data collection is

a stage where data is captured from network traffic and then used to train and test the

system. Pre-processing stage works on configuring the data which helps to build an

effective classification system. VFDT classification algorithm is used to build the

proposed NADS system and classify the network behavior in offline and online

modes. The alerting model is the last stage of this proposed system, here; it displays

the important information to security analyst in order to analyze the risks, and then

take appropriate actions.

3.2 System Architecture

The system architecture is shown in Figure 3.1. It presents a generic architecture of

an incremental Network-based Anomaly Detection System (NADS).

20

Figure 3.1: A Generic architecture of an NADS

The most important part is the anomaly detection system. It detects abnormal

behavior, and then saves the alerts in a computer as records, and a copy of this alert

record is sent to the network administrator “Security Analyst”. Thereafter,

appropriate actions are taken, by updating the database of the protection systems on

the network, e.g. HIDS…etc.

3.3 The Proposed System

The system consists of two phases: the training phase and the testing phase. The

training phase is shown in Figure 3.2. We have three steps and they are summarized

as follows:

Security Analyst

Intern
LAN

Switch

Anomaly Detection system

Update Firewall

Proposed

System

Firewall or Rule-Based

21

 KDD CUP99 dataset, it is used in the training phase.

 The operation mode, it contains the training phase.

 The proposed NADS system uses the VFDT algorithm, and it classifies the

connections as normal or abnormal.

Figure 3.2: Block diagram of the training phase of the proposed system.

The testing phase is shown in Figure 3.3. We have five steps are summarized as

follows:

Start

Selected higher
Information Features

(20)

Online
Mode?

Input KDD
CUP99 Training

Data Set

Input Operation
Mode

Apply VFDT Algorithm to prepare Training Model

End

Selected Basic
Features (5)

No Yes

22

 The packet capture is the first step in the testing phase. This part is concerned

with capturing the packets which passed through the whole network.

 Pre-processing refers to the process of extracting information about packet

connection from header and data in addition to construction of new statistical

features.

 The operation mode, it contains the testing phase.

 The proposed NADS system uses the VFDT algorithm, and it classifies the

connections as normal or abnormal.

 The alert report is the last step in the proposed NADS system.

23

Figure 3.3: Block diagram of the testing phase of the proposed system.

This system can work in two modes: online and offline. This depends on the type of

features used to train and test the system. The online mode works on the basic

features which are extracted from the header of packets only, such as (protocol type,

Ethernet

KDD
Data set

99?

Packets captured

End

Pre-processing

Input KDD CUP99 Data
Test

Update
Connection
Information

Connection
Availability

?

Online
Mode?

Extract Features
(20)

Use VFDT Algorithm as Classifier Model

Any
Attack (s) Generate

Alert Report

No

Yes

No

No

No

Yes

Yes Yes

Selected Higher
Information Gain (20)

Extract Basic
Features (5)

24

service, flag, src_bytes, and dst_bytes). Then it organizes these features as

connection records to enter into the model directly so as to determine the nature of

the connection as soon as possible, to give the appropriate response.

The offline mode works on the basic features, and statistical features. These features

are extracted from the header and the content of the packets. The statistical features

are calculated when each session is terminated, and the features are organized as

connection record. A large number of packets are needed to be calculated. These

connections are corrected, and then stored in the file in the form of connection

records in order to be entered into the classified model to test their classes. This

mode gives accurate results, but at the expense of time, it waits for numbers of the

packets to calculate the connection record.

VFDT algorithm is used in both of the modes in order to perform the classification of

connections, and then make the correct decision as to whether the connection is

normal or attack. In this case, if there are attacks, it generates reports regarding the

cause of the attacks, such as the IP address, MAC address, and time etc. The user can

only continue to monitor the network and identify attacks at any time. The proposed

system consists of four stages.

 Data Collection.

 Pre-Processing.

 Classification.

 Response.

3.3.1 Data Collection

This is the first stage in the proposed system. This part is concerned with capturing

25

the packets which passed through the whole network. Any packet that is targeted to

any node in the network can be captured. In addition to a full capturing, the data and

time fields are also displayed. These two values represent the data and the time that

the packet was captured. All packets that have been captured will be monitored, and

can be saved for analyzing.

Figure 3.4 shows the stages of packet decoder. The packet decoder takes packets

from network interface via “Winpcap library”, and determines which protocol is in

use for a given packet. Winpcap is a packet capture library under windows operating

system and it is used to capture packets from the network. Sometimes, the packets

which are taken by specific network interface using Winpcap library are also referred

to as data acquisition or packet capture stage.

The packet decoder is actually a Series of decoders. Each sub-decoder decodes

specific protocol elements starting from lower level data link protocols and moving

up to transport layer. The packets move through the various protocol decoders to fill

up a data structure with decoded packet data. After that, the packet stored in data

structure is sent for pre-processing stage [23].

26

Figure 3.4: Stages of packet decoder [23].

3.3.2 Pre-processing

The Figure 3.5 shows the stages of pre-processing dataset before the training model.

Data pre-processing is required in all knowledge discovery tasks, including network-

based intrusion detection. Pre-processing refers to the process of extracting

information about packet connection from header and data in addition to construction

of new statistical features. Standard pre-processing steps include dataset creation,

data cleaning, integration, and feature construction to derive new higher-level

features, feature selection to choose the optimal subset of relevant features,

reduction, and normalization. The most relevant steps for NIDS are now briefly

described [24].

Decode Data link

Decode Network

Decode Transport

Winpcap

Preprocessor

27

Data set Creation: It involves identifying representative network traffic for the

training and the testing. These dataset “profiles” were created from several normal

network sessions through weeks of normal work on the network. The profiles have

been processed so as to get the values of the basic and statistical features, which are

considered the normal and abnormal values for the network traffic.

Features Extraction: Detecting anomalous behavior depends on the values of

features connection of network. This starts with features extraction, which takes the

captured network packets as an input and then extracts features from these packets. It

extracted basic feature from header of packets such as (protocol type, service, flag

etc.) or extract content features from payload of packets such as (logged in, etc.) or

compute the features manually “statistical” like (count, srv_count, etc).

Reduction: This is commonly used to decrease the dimensionality of the dataset by

discarding any redundant or irrelevant features. This optimization is called feature

selection.

Normalization: In this step, data samples containing both normal and numerical

features were normalized and converted into linear discrete values “integers” in order

to avoid the impact of overpowering the large scale features on the other features. As

a result, the stages of pre-processing converts network traffic into a series of

observations, where each observation is represented as a feature vector “connection”.

Observations are optionally labeled with its class, such as “normal” or “anomalous”.

These feature vectors are then suitable as input to data mining algorithms(i.e.

VFDT).

28

Figure 3.5: The stages of pre-processing data [24].

3.3.3 Classification

The purpose of this stage is to detect intrusions. It consists of abnormal detection

mechanism also called abnormal detector. The structure of this abnormally detection

is shown in Figure 3.6. We have two steps that are summarized as follows.

- The features extraction, which takes the captured network packets as an input and

then extracts features from these packets.

Dataset Creation

Protocol Selection

Feature Calculation

Feature Selection

Normalization

Connections Records Training

Rough Network Traffic (on-line or off-line)

Detection
(On-line or off-line)
Normal
Normal
Probing

29

- The main task of the detector is to identify intrusion patterns from through the

extracted features by using VFDT algorithm.

Figure 3.6: The structure of the anomaly detector [25].

3.3.4 Response

This is the last stage in the proposed system. Sometimes, this stage is called alerting

model. This stage is concerned with deciding if an event or set of events is an

intrusion or not.

It receives the output of anomaly detection and then gives the result in a report. This

report shows if the event is an intrusion or it is normal. The report also specifies if it

is the machine that causes the abnormal behavior, the data and its time. Then the IP

address is updated and port number “attack signature” of the firewall or other nodes.

When a node receives the attack signature, it checks if it exists in its hash table. If

present, it means that the system is already alerted. If not, the attack signature is

 Network packets

Extracted Features

Detector Predefined
Features

Output

Features
Selector

30

added to the infected list. The updated attack signature is sent to all collaborating

nodes, to prevent any damage that may be caused to the available services.

The report will show only the final results, which are the following fields.

Data and Time; Source IP address; Destination IP address; MAC Address

Figure 3.7: Block diagram of data of the proposed system.

Date Clock

Load Class c
About

Appendix: C

Start

If
Online

Yes No

Select Network
interface

Offline Detection
Appendix: C3

Start Capture online
Detection Appendix: C1

Capture Window

Check Online

Stop Capture
Appendix: C2

Output
Window

Close

31

Chapter 4

4NADS SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

This chapter presents the implementation of the proposed system by using the

algorithm that is described in chapters two and three, and it displays the main points

that are used in the implementation process. The system is implemented on a

computer connected to the internet and it can be applied on most networks. The

visual C++ language version 6.0 was used to write the code of the system.
4.2 System Architecture

The proposed NADS system is shown in Figure 4.1. The system consists of the

following parts.

1. Router, it is used for internet packets routing.

2. Switch-with-promiscuous mode which is used for packets switching, and traffic-

sniffing for classification.

3. The NADS that are built to capture the packets, pre-processing, classify attacks

and send alert reports.

4. Security analyst is to take a suitable action in regards to the alerts, and also to

check if the alert is a true or false.

5. LAN. It contains three clients.

32

Figure 4.1: System architecture

The configuration of the system is done as follows:

1. Configure switch promiscuous mode.

2. Install the packet capture library on the NADS.

3. Install the classifier which belongs to the system.

4. Get internet connection by the router.

4.3 Performance Metrics

Confusion Matrix (CM) Table 4.1 is used in the measurement of performances of

IDS and it has the following elements.

1. True Positive (TP): Number of connections that were correctly classified as

attacks.

2. True Negative (TN): Number of connections that were correctly classified as

normal.

3. False Positive (FP): Number of normal connections that were classified as attacks.

4. False Negative (FN): Number of attack connections that were classified as

normal.

(1) Router

Internet (3) NADS

(4) Security
Analyst

(2) Switch

(5) LAN

33

Table 4.1: Confusion Matrix (CM) [26].
 Normal Intrusion (Attacks)

Normal TN FP

Intrusion (Attacks) FN TP

To rank the different results, there are standard metrics that have been developed for

evaluating network intrusion detections. Detection Rate (DR) and False Alarm Rate

(FAR) are the two most famous metrics that have already been used. DR or

Percentage of Successful Predication (PSP) is computed as the ratio between the

number of correctly detected attacks and the total number of attacks as in Equation

(4.1).The FAR which is computed as the ratio between the number of normal

connections, that are incorrectly misclassified as attacks and the total number of

normal connections as in Equation (4.2) [26].

 FNTP

TP
DR

 (4.1)

 TNFP

FP
FAR

 (4.2)

Cost per Test (CPT) is computed by using the CM as in Table 4.2. The cost matrix

calculates the cost of the confusion between the attacks and the normal connections.

The visual C++ code is used to write our algorithm to calculate the cost of each test

is called CPT as in Equation (4.3) [26].

5

1

5

1

,
1

ji

jCMi
n

CPT (4.3)

where n: is the number of instances in the test data set.

CM: denote the number of samples in class (i) misclassified as class (j).

34

Table 4.2: The Cost Matrix [26].
n Normal Probing DoS U2R R2L

1 Normal 0 1 2 2 2

2 Probing 1 0 2 2 2

3 DoS 2 1 0 2 2

4 U2R 3 2 2 0 2

5 R2L 4 2 2 2 0

Table 4.2 shows the cost matrix which calculates the cost of the confusion between

the attacks and the normal connections, and entry CM (i, j) represents the cost

penalty for misclassifying an instance belonging to class (i) into class (j).For the

purpose of calculating the CPT.

Figure 4.2 shows the Receiver Operating Characteristic (ROC) which is a procedure,

derived from statistical decision theory that was developed in the context of

electronic signal detection. It is used to evaluate the predictive ability of classifiers.

ROCs are plotted in coordinates which spanned by the rates of DR, and FAR

classification. The ROC curve is a graph of sensitivity “y‐axis” vs. specificity

“x‐axis”. For example, maximizing sensitivity corresponds to some large (y) value

on the ROC curve. Maximizing specificity corresponds to a small (x) value on the

ROC curve. Thus a good first choice for a test cutoff value is that value which

corresponds to a point on the ROC curve nearest to the upper left corner of the ROC

graph [27].

35

Figure 4.2: Receiver operating characteristic [27].

4.4 Real traffic Description

The packet capture is the first step of implementing the proposed system. It enables

us to capture all packets of the real network traffic. This process runs in promiscuous

mode, and captures all packets and stores them in data storage file. The data is stored

as a set of traffic flows, with each instance being described by a set of features.

In Figure 4.3 the user can monitor the network traffic by pressing command box

“start capture online detection”. In this case, all packets that consist of the network

traffic will be displayed.

The command box “stop capture” is used for stopping this process. The captured

packets can be viewed on the screen or can be saved in a log file to be analyzed. The

36

offline detection button works to activate the system for detecting attacks in the

offline mode.

Figure 4.3: The windows that deal with real packet capturing

Figure 4.4 shows the real traffic of the network after saving in log file which contains

the following fields: time, Type of service, Destination, src_byte, Dst_byte, Syn flag,

Service, MAC addresses, IP source, and Flag.

37

i Time MAC Src MAC Dest Type IP Src IP Dest

1 20:19:05 f8-1a-67-dd-fc-50 01-00-5e-7f-ff-fa UDP 192.168.0.1 239.255.255.250

2 20:19:05 f8-1a-67-dd-fc-50 01-00-5e-7f-ff-fa UDP 192.168.0.1 239.255.255.250

3 20:19:05 00-21-5d-46-a7-66 01-00-5e-7f-ff-fa ARP 192.168.0.2 239.255.255.250

4 20:19:05 00-21-5d-46-a7-66 01-00-5e-7f-ff-fa ARP 192.168.0.8 239.255.255.250

5 20:19:05 00-21-5d-46-a7-66 01-00-5e-7f-ff-fa ARP 192.168.0.3 239.255.255.250

6 20:19:05 00-21-5d-46-a7-66 01-00-5e-7f-ff-fa ARP 192.168.0.0 239.255.255.250

7 21:34:22 00-21-5d-46-a7-30 f8-1a-67-dd-fc-5 TCP 192.168.0.8 239.255.255.253

8 21:34:22 00-21-5d-46-a7-30 f8-1a-67-dd-fc-5 TCP 192.168.0.0 239.255.255.253

9 21:34:23 00-21-5d-46-a7-30 f8-1a-67-dd-fc-5 TCP 192.168.0.7 239.255.255.250

10 21:24:01 00-21-5d-46-a7-30 f8-1a-67-dd-fc-5 TCP 192.168.0.3 239.255.255.252

11 21:24:01 00-21-5d-46-a7-30 f8-1a-67-dd-fc-b UDP 192.168.0.0 239.255.255.257

12 21:24:02 00-21-5d-46-a7-30 f8-1a-67-dd-fc-b UDP 192.168.0.0 239.255.255.257

13 21:24:02 00-21-5d-46-a7-30 f8-1a-67-dd-fc-5 TCP 192.168.0.0 239.255.255.257

Figure 4. 4: A sample of network traffic

A 1.3 MB data is collected within a week duration from a network that consists of 3

hosts. We used this data to extract the next connections and check.

4.4.1 Pre-processing Real Network Traffic

Real network traffic is captured and saved in the files. The system works to filter

some packets and apply all steps of pre-processing which mentioned in the

subsection 3.3.2. We wrote the different codes in visual C++ language which

transforms the Tcpdump traffic into connection records with only 20 key features to

detect attacks. Figure 4.5 shows the connection extraction of 20 features. These

features are considered as an input vector to the VFDT algorithm for connection

analysis, and then detect the attacks or anomalies.

38

Figure 4.5: Extraction connection from real network traffic

4.5 Experimental Methodology and Results

In this section, we summarize our experimental results to detect the network

intrusion by using the VFDT algorithm over KDDCUP99 data set. We first describe

the data set used in the experiments and then discuss the results obtained. Finally, we

evaluate our approach and compare the results with the results obtained by other

researchers.

In the proposed NADS system, the first 20 features are used out of 41 features which

are shown in Appendix B.

Figure 4.6 represents one sample connection of our model; these connections were

39

collected from the KDD CUP99 data set, which consists of “normal and abnormal

behavior” for network traffic.

Figure 4.6: A sample connection in the network

VFDT algorithm is used to distinguish attacks from normal behaviors and identifies

different types of intrusions as described in section 2.5. The VFDT is run in the

offline mode. KDD CUP 99 dataset is used in the training phase. The VFDT

algorithm must undergo the training and testing phases before it is used as a detector.

We carried out four experiments on KDD CUP99 dataset in order to get the best

results. The conditions of these experiments are as follows.

Experiment 1: We used the whole of KDD CUP99 dataset for training, but we

selected 20 features only.

Experiment 2: We used the whole KDD CUP99 dataset for training, but we choose

15 features.

Experiment 3: We used 10% of the KDD CUP99 dataset for training, and we selected

41 features.

Experiment 4: We used the whole KDD CUP99 dataset for training, but we choose

only 5 the basic features.

5,tcp,smtp,SF,959,337,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0.00,00,0.00,0.00,1.00,0.

00.00,0.00,144,192,0.70,0.02,0.01,0.01,0.00,0.00,0.00,0.00,normal.

40

For the attacks DoS, probe, U2R, and R2L, the True Positive percentage (TP %) is

defined as the number of the related attack TP’s over the total number of TP's.

The results of these experiments can be seen in Table 4.3.

The first experimental result indicated that the proposed NADS system achieved a

DR percent of 93.825 % for attacks by using the VFDT algorithm, whereas the

achieved FAR rate is 0.608%. In addition, the TP% for DoS, Probe, U2R, and R2L is

93.106%, 79.04%, 22.84%, and 36.64% respectively.

The result of the second experiment is close to the first experiment, although the

detection rate for U2R becomes zero.

The third experimental result indicated that the proposed NADS system achieved a

DR percent of 95.532 % and a FAR percent of 0.993%. In addition, the TP% for

DoS, Probe, U2R, and R2L is 96.4%, 24.2%, 75.6%, and 81.6% respectively.

The fourth experimental result indicated that the proposed NADS system achieved a

DR percent of 90.34 % and a FAR rate of 0.78%. In addition, the TP% for DoS,

Probe, U2R, and R2L is 92.67%, 75.4%, 0%, and31.32% respectively.

Table 4.3 Performance metric between different experiments
Experiments DR% FAR% DoS TP

%
Probe TP

%
U2R TP

%
R2L TP

%

Experiment1 93.825 0.608 93.106 79.04 22.84 36.64

Experiment2 92.56 0.720 88.1 80 0 33.6

Experiment3 95.532 0.993 96.4 24.2 75.6 81.6

Experiment4 90.34 0.78 92.67 75.4 0 31.32

41

The following parameters are discussed to clarify our results precisely in terms of

system accuracy, classification speed, and memory allocation.

4.5.1 System Accuracy Results

The VFDT algorithm has better accuracy performance when compared with other

classification algorithms, where its classification accuracy is 93.825%. The ROC

curve of the system is shown in Figure 4.7. The goal from our research is to detect

many attacks while minimizing the generation of FAR. In addition Figure 4.7 shows

that our system is able to detect most of the attacks for the KDD CUP99 data set at a

low FAR rate of 0.608%.

Figure 4.7: ROC curve for VFDT algorithm.

4.5.2 Classification Speed Results

Figure 4.8 shows the training time versus number of connections. The VFDT

algorithm uses 100,000 connections at time 4.09s, whereas it uses1000, 000

connections at time 38.97s.

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

42

Figure 4.8: Training time versus number of connections.

4.5.3 Memory Allocation Results

Figure 4.9 shows the number of nodes which are created when we use the VFDT

algorithm. The unexpected increasing at the beginning of the chart represents the

beginning of the construction of a tree. The sufficient number of connections is

collected to be able to classify all types of attacks in the same tree. It continues to

increase gradually; while the number of nodes is almost stable.

43

Figure 4.9: No of nodes versus number of connections.

4.6 Comparison of the proposed NADS system using the VFDT
algorithm with Other Algorithms.

The results are discussed for each attack in the previous sections. In this section, the

detection rate and speed of classification for the proposed NADS system using the

VFDT algorithm are compared with several classification algorithms.

Table 4.4 shows the Detection Rate (DR), Training Time (TT) per each example for

the proposed NADS system using the VFDT algorithm and other classification

algorithms. The table also shows the different numbers of examples used in both the

training phase and the testing phase of the classification algorithms.

The number of examples is an influential factor on the percentage of the

classification accuracy and the training time. The proposed NADS system using the

VFDT algorithm outperforms all algorithms in terms of training time per example

since it has the lowest time. With respect to DR% performance, the proposed NADS

44

system using the VFDT algorithm outperforms all other algorithms except the

Genetic Programming (GP) algorithm where it has a higher DR rate of 98%. This is

because the GP algorithm uses 41 features in the training phase. The proposed

NADS system achieves better performance for the anomaly detection at high speed.

Table 4.4: A comparison of proposed system with other classification algorithms that

used KDD CUP 99 data set
No. Algorithm Training

Datasets Size

Testing
Datasets Size

DR% FAR% Training Time
(TT)in sec.

Training Time
Per Example

1 [NADS] 1,074,985 67,688 93.825 0.608 39.88 0.000003

2 [GP] 24,780 311,028 98 0.739 6480 0.2615

3 [SVM] 1,132,365 73,247 57.6 0.89 1040.4 0.0009

4 [SOM] 49,596 15,437 91.65 0.933 192.16 0.0038

5 [MLP] 49,596 15,437 92.03 0.91 350.15 0.0070

6 [BN] 49,596 15,437 90.62 0.897 6.28 0.0001

7 [J48] 49,596 15,437 92.06 0.62 15.85 0.0003

8 [LBK] 49,596 15,437 92.22 0.635 10.63 0.0002

9 [Apriori] 444,458 49,384 87.5 0.82 18.94 0.00004

10 [ITI] 169,000 311,029 92.38 0.598 17 0.0001

11 [PART] 444,458 49,384 46.67 0.935 48.8 0.0001

12 [RF] 65,525 65,525 90.08 0.781 129 0.0019

13 [K-Means] 55,000 25,000 86 0.653 13 0.0002

14 [FL] 54,226 56,226 91.25 0.721 87.9 0.0016

15 [ANN] 4,947 3,117 92.268 0.561 780 0.1576

16 [C4.5] 49,596 15,437 92.06 0.582 15.85 0.0003

45

Chapter 5

5CONCLUSION

The primary aim of this thesis is to propose a Network-based Anomaly Detection

System (NADS) which helps to take insidious attacks under control. This technique

depends on the quality or fastness of network, that is to say, it is expected that it will

distinguish every abnormal behavior from normal. The major goal of anomaly

observation system is to expose the detectable and undetectable intrusions. This

technique works on two modes, on-line and offline modes. The proposed NADS

system uses the Very Fast Decision Tree algorithm (VFDT), and it classifies the

connections as normal or abnormal.

The experimental results indicated that the proposed NADS system achieved a high

classification accuracy rate of 93% by using the VFDT algorithm. It is the highest

performance compared with all other algorithm except the Genetic Programming

(GP) algorithm where it has a higher DR rate of 98%. The speed of training

“building and testing” didn't exceed 39.88 seconds by using the VFDT algorithm,

whereas it is in terms of hours for others systems.

The VFDT outperforms all other algorithms in terms of training time per example

since it has the lowest time. Many researches related to Intrusion Detection System

(IDS) are being introduced recently. The research that can achieve a good score and

46

add an important contribution is the research that solves the important problematic

issues. Those include the detection optimization, and data security.

As a future work, this study can be extended in different aspects such as.

- The proposed NADS system used the VFDT algorithm for detection. Hence,

it can be analyzed using other detection algorithms as well.

- Also, one can try to solve the overlaps problem between normal and U2R

classes, and determine the class of each one.

- As the proposed NADS system uses “anomaly detection technique”, it can be

modified to use the misuse technique as well.

- Also, the proposed NADS system can be experimented on other data set like

SSENet-2011, and UNB ISCX 2012.

47

REFERENCES

[1] K. Sandeep, “Classification and Detection of Computer Intrusions”, PhD Thesis,

Purdue University, August 1995.

[2] A. Ali, W. L. Mahbod, “Network Intrusion Detection and Prevention, Concepts

and Techniques”, Springer Media, New York LLC, 2010.

[3] P. Animesh, P. Jung-Min, “ An Overview of Anomaly Detection Techniques:

Exiting Solutions and Latest Technological Trend”, The international Journal of

Computer and Telecommunications Networking Vol.51, issue 12, pp. 3448-

3470,2007.

[4] G. A. Blank, “TCP/IP Jumpstart: Internet Protocol Basics”, 2nd Edition, John

Wiley and Sons, 2002.

[5] H. O. Alanazi, R. Noor, B. Zaidan, A. Zaidan,” Intrusion Detection System:

Overview”, Journal of Computing, Vol. 2, Issue 2, pp.32-48, February 2010.

[6]

 [7]

L. Theodor’s, P. Konstantinos, “Data Mining Techniques for Network Intrusion

Detection Systems,” Department of Computer Science and Engineering UC

Riverside, Riverside CA, 2004.

Z. Zhi-Hua, L. Hang, Y. Qiang, “Advances is Knowledge Discovery and Data

Mining,” 11th Pacific-Asia Conference, PAKDD, Springer, China, Vol.4426,

2007.

48

[8] L. Wenke, J. Salvatore, W. Mok, “A Data Mining Framework for Building

Intrusion Detection Models, “IEEE Symposium on Security and Privacy, pp.

120-132, 1999.

[9] T. Pang-Ning, S. Michael, K. Vipin, “Introduction to Data Mining”, 2nd Edition,

Addison Wesley, March 2006.

[10] M. M. Gaber,” Advances in Data Stream Mining”, John Wiley and Sons, Vol. 2,

No. 1, pp. 79-85, 2012.

[11] T. Mahbod, E. Bagheri, A. Ghorbani, “A Detailed Analysis of the KDD CUP99

Data set”, 2nd IEEE Symposium on Computational Intelligence for Security and

Defense Application (CISDA), Vol. 3, No. 5,pp. 322-332,2009.

[12] M. Tasuya, N. Ayahiko, “ Detection of Fraud use of Credit Card by Extended

VFDT ,” IEEE Transactions on Knowledge and Data Engineering(TKDE), Vol.

21, No. 11, pp. 1505-1514,2011.

[13]

[14]

 M. Tatsuya, I. Masayuki, N. Ayahiko, K. Osmu, “Extension of Decision Tree

Algorithm for Stream Data Mining Using Real Data,” 5th International

Workshop on Computational Intelligence and Applications (IWCIA). IEEE

Systems, pp. 208-212, 2009.

 B. Daniel, J. Couto, S. Jajodia, N. Wu, “ADAM: A Test bed for Exploring the

use of Data Mining in Intrusion Detection”, SIGMOD, Vol. 30, No. 4, 2001.

49

[15] H. Sang-Jun, C. Sung-Bae, “Combining Multiple Host-Based Detectors using

Decision Tree,” 16th Australian Conference on Artificial Intelligence, Springer,

Vol. 2903, pp.208-220, 2003.

[16] S. Ahmed, “Intrusion Detection System using Data Mining”, Applied Science

Department, Master Thesis, University of Technology, 2006.

[17] B. Yacine, C. Frederic, “Neural Networks vs. Decision Tree for Intrusion

Detection,” IEEE/IST Workshop on Monitoring Attack Detection and Mitigation

(MonAM), 2006.

[18] P. Mrutyunjaya, R. P. Manas,” Network Intrusion Detection using Naïve

Bayes”, International Journal of Wei-computer Science and Network Security

(IJCSNS), Vol. 7, No.12, pp. 455-464, December 2007.

[19] P. Mrutyunjaya, R. P. Manas,” Evaluating Machine Learning Algorithms for

Detecting Network Intrusion,” International Journal of Recent Trends in

Engineering Vol. 1, No. 1, May 2009.

[20] A. N. Huy, D. Choi, “ Application of Data Mining to Network Intrusion

Detection: Classifier Selection Model”, Asia-pacific Network Operation and

Management Symposium (APNOMS), Springer-Verlag Berlin, Heidelberg, pp.

399-406, 2008.

50

[21] M. Dewan, H. Nouria, B. Emna, Z. Mohammed, M. Chowdhury, “ Attacks

Classification in Adaptive Intrusion Detection using Decision Tree”, World

Academy of Since, Engineering and Technology, No.63, pp.27-44, 2010a.

[22] M. Dewan, H. Nouria, Z. Mohammad, “ Combining Naïve Bayes and Decision

Tree for Adaptive Intrusion Detection”, International Journal of Network

Security and its Applications(IJNSA), Vol. 2, No. 2,pp. 233-247, 2010b.

[23] R. Hanumantha, G. Srinivas, D. Ankam, K. Vikas, “ Implementation of

Anomaly Detection Technique using Machine Learning Algorithms”,

International Journal of Computer Science and Telecommunications (IJCST),

Vol. 2, Issue 3, pp. 25-31,2011.

[24] R. Shanmugavadiru, N. Nagarajan, “ Network Intrusion Detection System using

Fuzzy Logic,” Indian Journal of Computer Science and Engineering (IJCSE),

Vol. 2, No. 1, pp. 101-111,2011.

[25] G. Radhika, S. Anjali, C. J. Ramesh, “Parallel Misuse and Anomaly Detection

Model,” International Journal of Network Security, Vol.14, No.4, pp. 211-225,

July 2012.

[26] S. William, “Network Security Essentials: Applications and Standards,” 1st

Edition, Prentice-Hall PTR Upper Saddle River, USA, 1999.

51

[27] E. Terry, “Intrusion Detection: Network Security Beyond the Firewall,” John

Wiley and Sons, New York, USA, 1998.

[28] F. Behrouz, “TCP/IP Protocol Suite”, 3rd Edition, Mc Grawa Hill Education,

2005.

[29] K. Urupoj, S. Surasak, “Network-based Intrusion Detection Model for

Detecting TCP,” Department of Computer Engineering, Kasetsart University,

Bangkok, Thailand, 2000.

[30] T. Jawin, “Network Protocols Handbook”, 2nd Edition, Jawin Technologies,

2005.

[31] T. Lammle, “CCNA Cisco Certified Network Associate Study Guide”, 6th

Edition, Wiley Publishing, 2007.

[32] S. Panear, S. Mao, J. Ryoo, Y. Li, “Essentials A Lab-based Approach,”

Cambridge University Press, 2004.

[33] C. Hunt, “TCP/IP Network Administration”, 3rd Edition, Networking OReilly

Media, 2002.

[34] P. Sandhye, A. Ajith, T. Johnson, “ Intrusion Detection Systems using Decision

Trees and Support Vector Machines”, International Journal of Applied Science

and Computations, Vol. 11,No.3, pp.118-134, 2002.

[35] G. Meera, S. Srivatsa, “Detecting and Preventing Attacks using Network

Intrusion Detection Systems”, International Journal of Computer Science and

52

Security, Vol. 2, issue 1, pp. 295-302, 2005.

[36] C. Endrof, E. Schultz, J. Mellaner, “Intrusion Detection and Prevention”,

California, McGeaw-Hill.2004.

[37] D. Dorothy, “ An Intrusion-detection Model”, IEEE Transactions on Software

Engineering Vol. 13, No. 2, pp. 222-232, 1978.

[38] D. Herve, D. Mare, W. Andreas, “Towards A taxonomy of Intrusion Detection

Systems”, Computer Networks, No. 8, pp. 805-822, 1999.

[39] M. A. Rassam, “ Anomaly Intrusion Detection System using Immune Network

with Reduced Network Traffic Features,” Master Thesis, Faculty of Computer

Science and Information Systems, University Technology, Malaysia, 2010.

[40] H. Marko, “Traffic Analysis for Intrusion Detection in Telecommunications

Networks”, Master Thesis, Computing and Electrical Engineering Faculty

Council, 2011.

[41] C. Brenton, C. Hunt, “Mastering Network Security”, 2nd Edition, SYBEX in

Alameda CA, USA, 2003.

[42] J. Menga, C. Timm, “CCSP Secure Intrusion Detection and SAFE

Implementation Study Guide”, John Wiley and Sons, SYBEX, 2004.

[43] A. Lazarevic, “Data Mining for Intrusion Detection Encyclopedia of Data

Warehousing and Mining”, Idea Group, 2005.

[44] E. Levant, L. Aleksandra, “The MINDS-Minnesota Intrusion Detection System

53

“, IDEAS, University of Minnesota, ACM New York, pp.255-261, 2003.

[45] N. A. Matthew, S. G. Shiva, “Comparative Analysis of Serial Decision Tree

Classification Algorithms”, International Journal of Computer Science and

Security (IJCSS), Vol. 3, issue 3, pp. 230-240, 2009.

[46] D. Pedro, H. Geoff, ”Mining High Speed Data Streams”, ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

[47] W. XU, Z. QIN, “ Constructing Decision Tree for Mining High-Speed Data

Streams”, Chinese Journal of Electronics, Vol. 21, No. 2, pp. 215-220, April

2012.

[48] Y. Hang, F. Simon, “ Moderated VFDT in Stream Mining using Adaptive Tie

Threshold and Incremental Pruning”, Springer-Verlag Berlin, Heidelberg, pp.

471-483, 2011.

[49] B. Salem, S. Karima, T. Karim, “Preprocessing Rough Network Traffic for

Intrusion Detection Purposes,” International Telecommunications IADIS,

Networks and Systems, pp. 105-109, 2007.

[50] J. D. Jonathan, J. C. Andrew, “Data Preprocessing for Anomaly based Network

Intrusion Detection: Review”, Journal Computer and Security, Vol. 30, No. 67,

353-375, 2011.

[51] N. M. Fatin, S. K. Aman, “ Identifying False Alarm Rates for Intrusion

Detection System with Data Mining”, International Journal of Computer

Science and Network Security(IJCSNS), Vol. 11, No. 4, pp. 22-28, 2011.

54

[52] K. Bhati, S. Shukla, S. Jain, “Intrusion Detection using Clustering”,

International Journal of Computer Applications, Vol. 1, Issue 2,pp. 125-138,

2010.

[53] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, P. K. chan, “Costbased

Modeling for Fraud and Intrusion Detection: Results from the Jam Project,”

Discex, Vol. 02, pp.1130, 2000.

[54] B. Marjan, E. Salahi, M. Khaleghi, “ An Improved Intrusion Detection

Technique Based on Two Strategies using Decision Tree and Neural Network”,

JCIT Journal, Vol. 4, No. 4, pp. 96-101,2009.

[55] V. Podgorelec, P. Kokol, B. Stiglic, I. Rozman, “ Decision Trees: An

Overview and Their use in Medicine,” Journal of Medical Systems Kluwer

Academic/ Plenum Presss, Vol. 26, No. 5, pp. 445-463, 2002.

[56] M. F. Kamel, B. Aoued, “Securing Network Traffic using Genetically Evolved

Transformations”, Malaysian Journal of Computer Science, Vol. 19, pp. 3-23,

2006.

[57] KDD CUP 99 Intrusion Detection Data

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html., 1999.

[58] J. Koziol, “Intrusion Detection with Snort”, 2nd Edition, Sams Indianapolis,

USA, 2003.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

55

APPENDICES

56

Appendix: A

List features KDD CUP 99 dataset for which the class is selected most relevant
features [39].

No. Class Label Relevant Features

1 Back 5,6
2 Land 7
3 Neptune 3,4,5,23,26,29,30,31,32,34,36,37,38,39
4 Pod 8,24
5 Smurt 2,3,5,6,12,25,29,30,32,36,37,39
6 Teardrop 8
7 Satan 27
8 Ipsweep 36,24
9 Nmap 5

10 Portsweep 28
11 Normal 3,6,12,23,25,26,29,30,33,34,35,36,37,38,39
12 Guess_passwd 11,6,3,4
13 Ftp_writ 9,23
14 Imap 3,39
15 Phf 6,10,14,5
16 Multihop 23
17 Warezmaster 24,6,1
18 Warezclient 3,24,26
19 Spy 39,1
20 Buffer_overflow 3,24,14,6
21 Loadmodule 36,24,3
22 Perl 14,16,18,5
23 Rootkit 24,23,3

57

Appendix: B

Attributes description of KDD CUP 99 dataset [54].
No. Network attributes Description Type

1 Duration Duration of the connection in second. Continuous

2 Protocol_type Connection protocol (e.g. TCP, UDP,
ICMP).

Discrete

3 Service Destination service (e.g. telnet, ftp, http,
pop3…)

Discrete

4 Flag Status flag of the connection (e.g. REJ, SF,
S0…)

Discrete

5 Src_bytes Bytes sent from source to destination Continuous

6 dst_bytes Bytes sent from destination to source Continuous

7 Land 1 if connection is from /to the same
host/port; 0 otherwise

Discrete

8 Wrong_fragment Number of wrong fragments Continuous

9 Urgent Number of urgent packets Continuous

10 Hot Number of”hot” indicators Continuous

11 Num_failed_logins Number of failed logins Continuous

12 Logged_in 1 if successfully logged in; 0 otherwise Discrete

13 Num_compromised Number of “compromised” conditions Continuous

14 Root_shell 1 if root shell is obtained; 0 otherwise Continuous

15 Su_attempted 1 if ”as root” command attempted; 0
otherwise

Continuous

58

No. Network attributes Description Type

16 Num_root Number of root accesses Continuous

17 Num_file_creations Number of file creation operations Continuous

18 Num_shells Number of shell prompts Continuous

19 Num_access_files Number of operations on access control
files

Continuous

20 Num_outbound_cmds Number of outbound commands in an ftp
session

Continuous

21 Is_host_login 1 if the login belongs to the “hot” list; 0
otherwise

Discrete

22 Is_guest_login 1 if the login is a “ guest” login; 0
otherwise

Discrete

23 count Number of connections to the same host
as the current connection in the past two

seconds

Continuous

24 Srv_ count Number of connections to the same
service as current connection in the past

two seconds

Continuous

25 Serror_rate No. of connections that have “ SYN”
errors

Continuous

26 Srv_ Serror_rate No. of connections that have “ SYN”
errors

Continuous

27 Rerror_rate No. of connections that have “ REJ”
errors

Continuous

28 Srv_ rerror_rate No. of connections that have “ REJ”
errors

Continuous

29 Same_ rerror_rate No. of connections to the same service Continuous

30 Diff_ Srv_ rate No. of connections to different services Continuous

31 Srv_ Diff_host_ rate No. of connections to different hosts Continuous

32 Dst_ host_count Count of connections having the same
destination host

Continuous

33 Dst_ host_ Srv_count Count of connections having the same
destination host and using the same

service

Continuous

59

No. Network attributes Description Type

34

Dst_ host_ Same_ rate Count of connections having the
same destination host and using the

same service

Continuous

35 Dst_ host_Diff_ Srv _
rate

No. of different services on the
current host

Continuous

36 Dst_ host_
Same_src_port_ rate

No. of connections to current host
having the same src port

Continuous

37 Dst_ host_ Srv _ Diff_
host_ rate

No. of connections to same service
coming from different hosts

Continuous

38 Dst_ host_ serror_ rate No. of connections to the current
host that have an S0 error

Continuous

39 Dst_ host_ Srv _serror_
rate

No. of connections to the current
host and specified service that have

an S0 error

Continuous

40 Dst_ host_rerror_ rate No. of connections to the current
host that have an RST error

Continuous

41 Dst_ host_ rerror_ rate No. of connections to the current
host and specified service that have

an RST error

Continuous

60

Appendix: C

Figure C1: Start Capture (Online Detection).

void C Naseer VFDT Dlg::On Start()

{

// TODO: Add your control notification handler code here

// TODO: Start capturing thread

if (is Nic O penned){

 Print Out(" sniffer is about to start ");

HANDLE thd1 = Create Thread
(NULL,0,(LPTHREAD_START_ROUTINE)sniff Thread,(LPVOID) this,0,&tid);

C W nd * ctrl = this->Get Dlg Item (IDC_START);

ctrl->Enable Window(false);

ctrl = this->Get Dlg Item(IDC_STOP);

ctrl->Enable Window(true);

 }

Else {

 Message Box (" NIC has not been o penned or Selected ");

 }

}

61

void C Naseer VFDT Dlg::On Sel change Nic Combo()

{

// TODO: Add your control notification handler code here

int selection = m Nic Combo. Get Cur Sel ();

char err buf [PCAP_ERRBUF_SIZE];

p cap _ if _ t *d;

d=all devs;

for (int i=0;i<selection; i++) d=d->next;

if (d->addresses->add r->sa _family==AF_INET)

{

If Info. Device Name =d->name;

If Info. Description=d->description;

If Info. IP Add r=(((struct sock add r_ in *)d->addresses->add r)->sin _add r. s
_add r);

If Info. IP Mask=(((struct sock add r_ in *)d->addresses->net mask)->sin _add r. s_
add r);

//Flag=true; //

}

62

if ((If Info. Ad handle = pcap_open (If Info. Device Name, // name of the device

65536, // portion of the packet to capture.

// 65536 grants that the whole packet will be captured on all the MACs.

PCAP_OPENFLAG_PROMISCUOUS,// promiscuous mode (nonzero means
promiscuous)

1000, / read timeout

NULL,

Err buf // error buffer)) == NULL)

{

 Is Nic O penned = false;

 //f print f (std err,"\n Error opening adapter\n");

 // return -1;

}

else

{

 // To do: start a thread to capture the traffic

 Is Nic O penned = true;

}

}

63

C String C Naseer VFDT Dlg::Get Tos (int port)

{

switch(port){

 case 7: return "echo";

case 13: return "daytime";

case 20: return "ftp-data";

case 21: return "ftp-control";

case 22: return "ss h";

case 23: return "telnet";

case 25: return "smtp";

case 39: return "resource-location-protocol";

case 42: return "Host Name Server-Microsoft-WINS" ;

case 43: return "WHOIS";

case 50: return "Remote-Mail-Checking-Protocol-(RMCP)";

case 53: return "d ns";

 case 63: return "Who is-and-Network-Information-Lookup-Service";

case 67: return "dh cp-port";

case 80: return "http";

case 102: return "";

case 105: return "TCP-UDP-Mailbox-Name-Name server";

case 110: return "pop3";

case 115: return "SFTP-port";

case 123: return "network-time-protocol";

case 135: return "RPC-locator-service-port";

64

case 137: return "net Bios-name-service-port";

case 143: return "Internet-Message-Access-Protocol-(IMAP)-Mail-Server";

case 153: return "SGMP";

case 161: return "SNMP";

case 179: return "BGP";

case 379: return "SRS";

case 389: return "LDAP";

case 443: return "HTTPs";

case 445: return "SMB";

case 465: return "Google-mail-out";

case 636: return "LDAP-SSL";

case 993: return "SECURE-IMAP";

case 995: return "Google-mail-in";

case 1026: return "CAP";

case 1080: return "SOCKS";

case 1090: return "Real Audio Port";

 case 1723: return "PPTP";

 case 3128: return "squid";

 case 5000: return "yahoo-messenger-voice-chat";

 case 7070: return "real _audio _video";

Default: return "?";

}

}

65

LRESULT C Naseer VFDT Dlg::Packet Handler (WPARAM w P ar am,
LPARAM l P ar am)

{

 C String str;

C String str Cache;

C String ar p IP Source;

C String ar p IP Target;

C String ar p MAC Source;

C String ar p MAC Target;

 C String output;

U _short sport, d port;

 tm* l time;

char time[100],source[20], dest [20],buffer[250];

int local Counter = pack Pointer;

pack Pointer = 0;

cap Pointer++;

/// Start follower thread

//if(!START_FOLLOWER)

// {

// h Follower Thread = Create Thread (NULL, 0,
(LPTHREAD_START_ROUTINE) Sniffing Follower, (LPVOID) this, 0, &h
Follower);

66

// START_ FOLLOWER = true;

// }

//if(global > local Pointer && START_FOLLOWER)

 // Resume Thread (h Follower Thread);

for(int i=0;i<local Counter; i++,global++)

 {

str. Format("%d", global);

m Cap Window. Insert Item (global, str);

 f print f (f p,"%d ",global);

 l time = local time(&this->m Packets[i].header->ts. tv _sec);

 strf time(time, size of(time) ,"%H:%M:%S", l time);

 this->m Cap Window. Set Item Text (global, 1, time);

 output. Format (" %d is Tested: %s", cap Pointer, "Normal");

f print f(f p," %s ",time);

//Get Frame type

 Eth _header* eh=(eth _header*) m Packets[i].p k t _data;

if(n to h s (eh->type)==0x0806)

 {

 Ar p_ header* ar ph=(ar p_ header*)(m Packets[i].p k t _data
+ETHER_LENGTH);

if(ar ph->op code == 256) //ARP_REQ)

m Cap Window. Set Item Text (global, 4,"ARP-REQUEST");

 if (ar ph->op code == 512) //ARP_REP)

67

M Cap Window. Set Item Text (global, 4,"ARP-REPLY");

If (ar ph->op code == RARP_REQ)

 M Cap Window .Set Item Text (global, 4,"RARP-REQUEST");

 if(ar ph->op code == RARP_REP)

m Cap Window. Set Item Text (global,4,"RARP-REPLY");

//Get src and destination ip address

Sprint f (source,"%d. %d. %d. %d",

Ar ph->saddr.byte1,

Ar ph->saddr.byte2,

Ar ph->saddr.byte3,

Ar ph->saddr.byte4);

Sprint f (buffer,"%02x-%02x-%02x-%02x-%02x-%02x",arph->s mac[0],

Ar ph->s mac [1],

Ar ph->s m ac [2],

Ar ph->s mac [3],

Ar ph->s mac [4],

Ar ph->s mac [5]);

M Cap Window. Set Item Text (global, 2, buffer);

Sprint f (dest,"%d. %d. %d. %d",

Ar ph->daddr.byte1,

Ar ph->daddr.byte2,

Ar ph->daddr.byte3,

Ar ph->daddr.byte4);

Sprint f (buffer,"%02x-%02x-%02x-%02x-%02x-%02x",arph->d mac[0],

68

Ar ph->d mac [1],

Ar ph->d mac [2],

Ar ph->d mac [3],

Ar ph->d mac [4],

Ar ph->d mac [5]);

 M Cap Window. Set Item Text (global, 3, buffer);

M Cap Window. Set Item Text(global,5,source);

M Cap Window. Set Item Text (global,6,dest);

//Information

if(n to h s (ar ph->op code)==0x0001)

Sprint f (buffer, "ARP Request frame");

If (n to h s(ar ph->op code)==0x0002)

Sprint f (buffer, "ARP Reply frame");

If (n to h s (ar ph->op code) ==0x0003)

Sprint f (buffer, "RARP Request frame");

if(n to h s(ar ph->op code)==0x0002)

Sprint f (buffer, "RARP Reply frame");

M Cap Window. Set Item Text (global,7,buffer);

Continue;

 }

69

ip _header* I h=(ip _header*)(m Packets[i]. p k t _data +ETHER_LENGTH);

//Get IP Header...

if(n to h s (eh->type)==0x0800)

{

If (I h->proto == 1) {m Cap Window. Set Item Text (global,4,"ICMP");

}

If (I h->proto == 6) {m Cap Window. Set Item Text(global,4,"TCP");

F print f (f p,"%s ","TCP");

 //get tcp information here

/* retrieve the position of the udp header */

 Unsigned int ip _l en = (I h->ver _i hl & 0xf) * 4;

Tcp h = (tcp Header) ((u _char*) I h + ip _l en

/* convert from network byte order to host byte order */

Sport = n to h s (tcp h->th _sport);

D port = n to h s (tcp h->th _d port);

// log ports to log file

 F print f (f p," %d ", sport);

 F print f (f p," %d ", d port);

F print f (f p," syn: %d ", (tcp h->th _flags & TH_SYN) &0x01);

F print f (f p, " service: %s ", Get Tos (d port));

}

70

Figure C2: Stop Capture.

void C Naseer VFDT Dlg::On Stop()

{

// TODO: Add your control notification handler code here

B Exit = true;

C W nd * ctrl = this->Get Dlg Item (IDC_START);

ctrl->Enable Window(true);

ctrl = this->Get Dlg Item(IDC_STOP);

ctrl->Enable Window(false);

}

71

Figure C3: Offline detection.

void C Naseer VFDT Dlg::On Offline()

{

// TODO: Add your control notification handler code here

out = "";

char file Names[255];

char data Names[255];

this->Print Out(" ------- Very Fast Decision Tree ------- ");

 FILE *example In, *prune Set = 0;

 Example Spec P tr es;

 Example P tr e;

 VFDT P tr VFDT;

 Decision Tree P tr d t;

 long seen = 0;

 long learn Time, allocation;

 int iteration;

 int ar g c;

 char *ar g v[30];

// struct t ms start time;

 // struct t ms end time;

72

Arg c=12;

Arg v [0] ="VFDT. c";

Arg v [1] ="-source";

Arg v [2] ="C:\\kdd\\kdd cup _names";

Arg v [3] ="-f";

Arg v [4] ="kdd cup _names";

Arg v [5] ="-u";

Arg v [6] ="-v";

Arg v [7] ="-no Cache Training Examples";

Arg v [8] ="-output Tree";

Arg v [9] ="-prune";

Arg v [10] ="-schedule";

Arg v [11] ="-incremental Reporting"; _process Arg s (arg c, arg v);

Sprint f (file Names, "%s\\%s .names", g Source Directory, g File Stem);

Sprint f (data Names, "%s\\%s .data", g Source Directory, g File Stem);

 Print Out (file Names);

 Print Out (data Names);

 C String c on fig;

73

Con fig .Format (" Message Level: %d, Split Confidence: %f, g Tie Confidence:
%f", g Message Level, g Split Confidence,

G Tie Confidence);

Print Out (con fig);

int g Use Gini = 0;

int g Rescans = 1;

int g Chunk = 300;

int g Grow Megs = 1000;

int g St din = 0;

int g Use Schedule = 0;

long g Schedule Count = 10000;

float g Schedule Mult = 1.44;

//es = Example Spec Read (file Names);

Create Thread (NULL, 0,)

(LPTHREAD_START_ROUTINE) Offline VFDT,

(LPVOID) this,

0, &offline TID);

}

74

void C Naseer VFDT Dlg::Online Print Out(C String data)

{

Online Out+=data;

M Online out Control .Set Window Text (online Out);

Online Out+="\r\n";

}

	OLE_LINK33
	OLE_LINK34

